ON THE DE RHAM AND p-ADIC REALIZATIONS OF THE ELLIPTIC POLYLOGARITHM FOR CM ELLIPTIC CURVES
نویسندگان
چکیده
In this paper, we give an explicit description of the de Rham and p-adic polylogarithms for elliptic curves using the Kronecker theta function. We prove in particular that when the elliptic curve has complex multiplication and good reduction at p, then the specializations to torsion points of the p-adic elliptic polylogarithm are related to p-adic Eisenstein-Kronecker numbers, proving a p-adic analogue of the result of Beilinson and Levin expressing the complex elliptic polylogarithm in terms of Eisenstein-Kronecker-Lerch series. Our result is valid even if the elliptic curve has supersingular reduction at p. 0. Introduction 0.
منابع مشابه
Realizations of the Elliptic Polylogarithm for CM elliptic curves
In these notes, we give an overview of our paper [BKT] which gives an explicit description of the de Rham and p-adic realizations of the elliptic polylogarithm, for a general elliptic curve defined over a subfield of C in the de Rham case and for a CM elliptic curve defined over its field of complex multiplication and with good reduction at the primes above p ≥ 5 in the p-adic case. As explaine...
متن کاملOn 3-adic Heights on Elliptic Curves
In 2006, Mazur, Stein, and Tate [4] gave an algorithm for computing p-adic heights on elliptic curves E over Q for good, ordinary primes p ≥ 5. Their work makes essential use of Kedlaya’s algorithm [3], where the action of Frobenius is computed on a certain basis of the first de Rham cohomology of E, with E given by a “short” Weierstrass model. Kedlaya’s algorithm requires that the working mode...
متن کاملp-adic cohomology: from theory to practice
These notes (somewhat revised from the version presented at the 2007 AWS) present a few facets of the relationship between p-adic analysis, algebraic de Rham cohomology, and zeta functions of algebraic varieties. A key theme is the explicit, computable nature of these constructions, which makes them suitable for numerical calculations. For instance, if you ask the computer algebra system Magma ...
متن کاملGENERALISED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES
Introduction 2 1. Preliminaries 6 1.1. Algebraic modular forms 6 1.2. Modular forms over C 9 1.3. p-adic modular forms 11 1.4. Elliptic curves with complex multiplication 12 1.5. Values of modular forms at CM points 14 2. Generalised Heegner cycles 15 2.1. Kuga-Sato varieties 15 2.2. The variety Xr and its cohomology 18 2.3. Definition of the cycles 19 2.4. Relation with Heegner cycles and L-se...
متن کاملHodge-Tate Theory
This thesis aims to expose the amazing sequence of ideas, concerning p-adic representations coming from geometry, that form the heart of what was called Hodge-Tate theory. This subject, initiated by Tate in the late ’60s in analogy to classical Hodge theory, leads in to the now vast and highly fruitful program of p-adic Hodge Theory. The central result of the theory is the Hodge-Tate decomposit...
متن کامل